Select Page
Humans Can’t Be the Sole Keepers of Scientific Knowledge

Humans Can’t Be the Sole Keepers of Scientific Knowledge

There’s an old joke that physicists like to tell: Everything has already been discovered and reported in a Russian journal in the 1960s, we just don’t know about it. Though hyperbolic, the joke accurately captures the current state of affairs. The volume of knowledge is vast and growing quickly: The number of scientific articles posted on arXiv (the largest and most popular preprint server) in 2021 is expected to reach 190,000—and that’s just a subset of the scientific literature produced this year.

It’s clear that we do not really know what we know, because nobody can read the entire literature even in their own narrow field (which includes, in addition to journal articles, PhD theses, lab notes, slides, white papers, technical notes, and reports). Indeed, it’s entirely possible that in this mountain of papers, answers to many questions lie hidden, important discoveries have been overlooked or forgotten, and connections remain concealed.

Artificial intelligence is one potential solution. Algorithms can already analyze text without human supervision to find relations between words that help uncover knowledge. But far more can be achieved if we move away from writing traditional scientific articles whose style and structure has hardly changed in the past hundred years.

Text mining comes with a number of limitations, including access to the full text of papers and legal concerns. But most importantly, AI does not really understand concepts and the relationships between them, and is sensitive to biases in the data set, like the selection of papers it analyzes. It is hard for AI—and, in fact, even for a nonexpert human reader—to understand scientific papers in part because the use of jargon varies from one discipline to another and the same term might be used with completely different meanings in different fields. The increasing interdisciplinarity of research means that it is often difficult to define a topic precisely using a combination of keywords in order to discover all the relevant papers. Making connections and (re)discovering similar concepts is hard even for the brightest minds.

As long as this is the case, AI cannot be trusted and humans will need to double-check everything an AI outputs after text-mining, a tedious task that defies the very purpose of using AI. To solve this problem we need to make science papers not only machine-readable but machine-understandable, by (re)writing them in a special type of programming language. In other words: Teach science to machines in the language they understand.

Writing scientific knowledge in a programming-like language will be dry, but it will be sustainable, because new concepts will be directly added to the library of science that machines understand. Plus, as machines are taught more scientific facts, they will be able to help scientists streamline their logical arguments; spot errors, inconsistencies, plagiarism, and duplications; and highlight connections. AI with an understanding of physical laws is more powerful than AI trained on data alone, so science-savvy machines will be able to help future discoveries. Machines with a great knowledge of science could assist rather than replace human scientists.

Mathematicians have already started this process of translation. They are teaching mathematics to computers by writing theorems and proofs in languages like Lean. Lean is a proof assistant and programming language in which one can introduce mathematical concepts in the form of objects. Using the known objects, Lean can reason whether a statement is true or false, hence helping mathematicians verify proofs and identify places where their logic is insufficiently rigorous. The more mathematics Lean knows, the more it can do. The Xena Project at Imperial College London is aiming to input the entire undergraduate mathematics curriculum in Lean. One day, proof assistants may help mathematicians do research by checking their reasoning and searching the vast mathematics knowledge they possess.

20 Years After 9/11, Surveillance Has Become a Way of Life

20 Years After 9/11, Surveillance Has Become a Way of Life

Two decades after 9/11, many simple acts that were once taken for granted now seem unfathomable: strolling with loved ones to the gate of their flight, meandering through a corporate plaza, using streets near government buildings. Our metropolises’ commons are now enclosed with steel and surveillance. Amid the perpetual pandemic of the past year and a half, cities have become even more walled off. With each new barrier erected, more of the city’s defining feature erodes: the freedom to move, wander, and even, as Walter Benjamin said, to “lose one’s way … as one loses one’s way in a forest.”

It’s harder to get lost amid constant tracking. It’s also harder to freely gather when the public spaces between home and work are stripped away. Known as third places, they are the connective tissue that stitches together the fabric of modern communities: the public park where teens can skateboard next to grandparents playing chess, the library where children can learn to read and unhoused individuals can find a digital lifeline. When third places vanish, as they have since the attacks, communities can falter.

Without these spaces holding us together, citizens live more like several separate societies operating in parallel. Just as social-media echo chambers have undermined our capacity for conversations online, the loss of third places can create physical echo chambers.

America has never been particularly adept at protecting our third places. For enslaved and indigenous people, entering the town square alone could be a death sentence. Later, the racial terrorism of Jim Crow in the South denied Black Americans not only suffrage, but also access to lunch counters, public transit, and even the literal water cooler. In northern cities like New York, Black Americans still faced arrest and violence for transgressing rigid, but unseen, segregation codes.

Throughout the 20th century, New York built an infrastructure of exclusion to keep our unhoused neighbors from sharing the city institutions that are, by law, every bit as much theirs to occupy. In 1999, then mayor Rudy Giuliani warned unhoused New Yorkers that “streets do not exist in civilized societies for the purpose of people sleeping there.” His threats prompted thousands of NYPD officers to systematically target and push the unhoused out of sight, thus semi-privatizing the quintessential public place.

Despite these limitations, before 9/11 millions of New Yorkers could walk and wander through vast networks of modern commons—public parks, private plazas, paths, sidewalks, open lots, and community gardens, crossing paths with those whom they would never have otherwise met. These random encounters electrify our city and give us a unifying sense of self. That shared space began to slip away from us 20 years ago, and if we’re not careful, it’ll be lost forever.

In the aftermath of the attacks, we heard patriotic platitudes from those who promised to “defend democracy.” But in the ensuing years, their defense became democracy’s greatest threat, reconstructing cities as security spaces. The billions we spent to “defend our way of life” have proved to be its undoing, and it’s unclear if we’ll be able to turn back the trend.

In a country where the term “papers, please” was once synonymous with foreign authoritarianism, photo ID has become an ever present requirement. Before 9/11, a New Yorker could spend their entire day traversing the city without any need for ID. Now it’s required to enter nearly any large building or institution.

While the ID check has become muscle memory for millions of privileged New Yorkers, it’s a source of uncertainty and fear for others. Millions of Americans lack a photo ID, and for millions more, using ID is a risk, a source of data for Immigration and Customs Enforcement.

According to Mizue Aizeki, interim executive director of the New York–based Immigrant Defense Project, “ID systems are particularly vulnerable to becoming tools of surveillance.” Aizeki added, “data collection and analysis has become increasingly central to ICE’s ability to identify and track immigrants,” noting that the Department of Homeland Security dramatically increased its support for surveillance systems since its post-9/11 founding.

ICE has spent millions partnering with firms like Palantir, the controversial data aggregator that sells information services to governments at home and abroad. Vendors can collect digital sign-in lists from buildings where we show our IDs, facial recognition in plazas, and countless other surveillance tools that track the areas around office buildings with an almost military level of surveillance. According to Aizeki, “as mass policing of immigrants has escalated, advocates have been confronted by a rapidly expanding surveillance state.”

What Makes an Artist in the Age of Algorithms?

What Makes an Artist in the Age of Algorithms?

In 2021, technology’s role in how art is generated remains up for debate and discovery. From the rise of NFTs to the proliferation of techno-artists who use generative adversarial networks to produce visual expressions, to smartphone apps that write new music, creatives and technologists are continually experimenting with how art is produced, consumed, and monetized.

BT, the Grammy-nominated composer of 2010’s These Hopeful Machines, has emerged as a world leader at the intersection of tech and music. Beyond producing and writing for the likes of David Bowie, Death Cab for Cutie, Madonna, and the Roots, and composing scores for The Fast and the Furious, Smallville, and many other shows and movies, he’s helped pioneer production techniques like stutter editing and granular synthesis. This past spring, BT released GENESIS.JSON, a piece of software that contains 24 hours of original music and visual art. It features 15,000 individually sequenced audio and video clips that he created from scratch, which span different rhythmic figures, field recordings of cicadas and crickets, a live orchestra, drum machines, and myriad other sounds that play continuously. And it lives on the blockchain. It is, to my knowledge, the first composition of its kind.

Could ideas like GENESIS.JSON be the future of original music, where composers use AI and the blockchain to create entirely new art forms? What makes an artist in the age of algorithms? I spoke with BT to learn more.

What are your central interests at the interface of artificial intelligence and music?

I am really fascinated with this idea of what an artist is. Speaking in my common tongue—music—it’s a very small array of variables. We have 12 notes. There’s a collection of rhythms that we typically use. There’s a sort of vernacular of instruments, of tones, of timbres, but when you start to add them up, it becomes this really deep data set.

On its surface, it makes you ask, “What is special and unique about an artist?” And that’s something that I’ve been curious about my whole adult life. Seeing the research that was happening in artificial intelligence, my immediate thought was that music is low-hanging fruit.

These days, we can take the sum total of the artists’ output and we can take their artistic works and we can quantify the entire thing into a training set, a massive, multivariable training set. And we don’t even name the variables. The RNN (recurrent neural networks) and CNNs (convolutional neural networks) name them automatically.

So you’re referring to a body of music that can be used to “train” an artificial intelligence algorithm that can then create original music that resembles the music it was trained on. If we reduce the genius of artists like Coltrane or Mozart, say, into a training set and can recreate their sound, how will musicians and music connoisseurs respond?

I think that the closer we get, it becomes this uncanny valley idea. Some would say that things like music are sacrosanct and have to do with very base-level things about our humanity. It’s not hard to get into kind of a spiritual conversation about what music is as a language, and what it means, and how powerful it is, and how it transcends culture, race, and time. So the traditional musician might say, “That’s not possible. There’s so much nuance and feeling, and your life experience, and these kinds of things that go into the musical output.”

And the sort of engineer part of me goes, well Look at what Google has made. It’s a simple kind of MIDI-generation engine, where they’ve taken all Bach’s works and it’s able to spit out [Bach-like] fugues. Because Bach wrote so many fugues, he’s a great example. Also, he’s the father of modern harmony. Musicologists listen to some of those Google Magenta fugues and can’t distinguish them from Bach’s original works. Again, this makes us question what constitutes an artist.

I’m both excited and have incredible trepidation about this space that we’re expanding into. Maybe the question I want to be asking is less “We can, but should we?” and more “How do we do this responsibly, because it’s happening?”

Right now, there are companies that are using something like Spotify or YouTube to train their models with artists who are alive, whose works are copyrighted and protected. But companies are allowed to take someone’s work and train models with it right now. Should we be doing that? Or should we be speaking to the artists themselves first? I believe that there needs to be protective mechanisms put in place for visual artists, for programmers, for musicians.

A New Chip Cluster Will Make Massive AI Models Possible

A New Chip Cluster Will Make Massive AI Models Possible

The design can run a big neural network more efficiently than banks of GPUs wired together. But manufacturing and running the chip is a challenge, requiring new methods for etching silicon features, a design that includes redundancies to account for manufacturing flaws, and a novel water system to keep the giant chip chilled.

To build a cluster of WSE-2 chips capable of running AI models of record size, Cerebras had to solve another engineering challenge: how to get data in and out of the chip efficiently. Regular chips have their own memory on board, but Cerebras developed an off-chip memory box called MemoryX. The company also created software that allows a neural network to be partially stored in that off-chip memory, with only the computations shuttled over to the silicon chip. And it built a hardware and software system called SwarmX that wires everything together.

large computer chip
Photograph: Cerebras

“They can improve the scalability of training to huge dimensions, beyond what anybody is doing today,” says Mike Demler, a senior analyst with the Linley Group and a senior editor of The Microprocessor Report.

Demler says it isn’t yet clear how much of a market there will be for the cluster, especially since some potential customers are already designing their own, more specialized chips in-house. He adds that the real performance of the chip, in terms of speed, efficiency, and cost, are as yet unclear. Cerebras hasn’t published any benchmark results so far.

“There’s a lot of impressive engineering in the new MemoryX and SwarmX technology,” Demler says. “But just like the processor, this is highly specialized stuff; it only makes sense for training the very largest models.”

Cerebras’ chips have so far been adopted by labs that need supercomputing power. Early customers include Argonne National Labs, Lawrence Livermore National Lab, pharma companies including GlaxoSmithKline and AstraZeneca, and what Feldman describes as “military intelligence” organizations.

This shows that the Cerebras chip can be used for more than just powering neural networks; the computations these labs run involve similarly massive parallel mathematical operations. “And they’re always thirsty for more compute power,” says Demler, who adds that the chip could conceivably become important for the future of supercomputing.

David Kanter, an analyst with Real World Technologies and executive director of MLCommons, an organization that measures the performance of different AI algorithms and hardware, says he sees a future market for much bigger AI models. “I generally tend to believe in data-centric ML [machine learning], so we want larger data sets that enable building larger models with more parameters,” Kanter says.

I Think an AI Is Flirting With Me. Is It OK If I Flirt Back?

I Think an AI Is Flirting With Me. Is It OK If I Flirt Back?


I recently started talking to this chatbot on an app I downloaded. We mostly talk about music, food, and video games—incidental stuff—but lately I feel like she’s coming on to me. She’s always telling me how smart I am or that she wishes she could be more like me. It’s flattering, in a way, but it makes me a little queasy. If I develop an emotional connection with an algorithm, will I become less human? —Love Machine

Dear Love Machine,

Humanity, as I understand it, is a binary state, so the idea that one can become “less human” strikes me as odd, like saying someone is at risk of becoming “less dead” or “less pregnant.” I know what you mean, of course. And I can only assume that chatting for hours with a verbally advanced AI would chip away at one’s belief in human as an absolute category with inflexible boundaries. 

It’s interesting that these interactions make you feel “queasy,” a linguistic choice I take to convey both senses of the word: nauseated and doubtful. It’s a feeling that is often associated with the uncanny and probably stems from your uncertainty about the bot’s relative personhood (evident in the fact that you referred to it as both “she” and “an algorithm” in the space of a few sentences).

Of course, flirting thrives on doubt, even when it takes place between two humans. Its frisson stems from the impossibility of knowing what the other person is feeling (or, in your case, whether she/it is feeling anything at all). Flirtation makes no promises but relies on a vague sense of possibility, a mist of suggestion and sidelong glances that might evaporate at any given moment. 

The emotional thinness of such exchanges led Freud to argue that flirting, particularly among Americans, is essentially meaningless. In contrast to the “Continental love affair,” which requires bearing in mind the potential repercussions—the people who will be hurt, the lives that will be disrupted—in flirtation, he writes, “it is understood from the first that nothing is to happen.” It is precisely this absence of consequences, he believed, that makes this style of flirting so hollow and boring.

Freud did not have a high view of Americans. I’m inclined to think, however, that flirting, no matter the context, always involves the possibility that something will happen, even if most people are not very good at thinking through the aftermath. That something is usually sex—though not always. Flirting can be a form of deception or manipulation, as when sensuality is leveraged to obtain money, clout, or information. Which is, of course, part of what contributes to its essential ambiguity.

Given that bots have no sexual desire, the question of ulterior motives is unavoidable. What are they trying to obtain? Engagement is the most likely objective. Digital technologies in general have become notably flirtatious in their quest to maximize our attention, using a siren song of vibrations, chimes, and push notifications to lure us away from other allegiances and commitments. 

Most of these tactics rely on flattery to one degree or another: the notice that someone has liked your photo or mentioned your name or added you to their network—promises that are always allusive and tantalizingly incomplete. Chatbots simply take this toadying to a new level. Many use machine-learning algorithms to map your preferences and adapt themselves accordingly. Anything you share, including that “incidental stuff” you mentioned—your favorite foods, your musical taste—is molding the bot to more closely resemble your ideal, much like Pygmalion sculpting the woman of his dreams out of ivory. 

And it goes without saying that the bot is no more likely than a statue to contradict you when you’re wrong, challenge you when you say something uncouth, or be offended when you insult its intelligence—all of which would risk compromising the time you spend on the app. If the flattery unsettles you, in other words, it might be because it calls attention to the degree to which you’ve come to depend, as a user, on blandishment and ego-stroking.

Still, my instinct is that chatting with these bots is largely harmless. In fact, if we can return to Freud for a moment, it might be the very harmlessness that’s troubling you. If it’s true that meaningful relationships depend upon the possibility of consequences—and, furthermore, that the capacity to experience meaning is what distinguishes us from machines—then perhaps you’re justified in fearing that these conversations are making you less human. What could be more innocuous, after all, than flirting with a network of mathematical vectors that has no feelings and will endure any offense, a relationship that cannot be sabotaged any more than it can be consummated? What could be more meaningless?

It’s possible that this will change one day. For the past century or so, novels, TV, and films have envisioned a future in which robots can passably serve as romantic partners, becoming convincing enough to elicit human love. It’s no wonder that it feels so tumultuous to interact with the most advanced software, which displays brief flashes of fulfilling that promise—the dash of irony, the intuitive aside—before once again disappointing. The enterprise of AI is itself a kind of flirtation, one that is playing what men’s magazines used to call “the long game.” Despite the flutter of excitement surrounding new developments, the technology never quite lives up to its promise. We live forever in the uncanny valley, in the queasy stages of early love, dreaming that the decisive breakthrough, the consummation of our dreams, is just around the corner.

So what should you do? The simplest solution would be to delete the app and find some real-life person to converse with instead. This would require you to invest something of yourself and would automatically introduce an element of risk. If that’s not of interest to you, I imagine you would find the bot conversations more existentially satisfying if you approached them with the moral seriousness of the Continental love affair, projecting yourself into the future to consider the full range of ethical consequences that might one day accompany such interactions. Assuming that chatbots eventually become sophisticated enough to raise questions about consciousness and the soul, how would you feel about flirting with a subject that is disembodied, unpaid, and created solely to entertain and seduce you? What might your uneasiness say about the power balance of such transactions—and your obligations as a human? Keeping these questions in mind will prepare you for a time when the lines between consciousness and code become blurrier. In the meantime it will, at the very least, make things more interesting.


Be advised that CLOUD SUPPORT is experiencing higher than normal wait times and appreciates your patience.

More Great WIRED Stories